An Introduction to Duality in Convex Optimization
نویسندگان
چکیده
ABSTRACT This paper provides a short introduction to the Lagrangian duality in convex optimization. At first the topic is motivated by outlining the importance of convex optimization. After that mathematical optimization classes such as convex, linear and non-convex optimization, are defined. Later the Lagrangian duality is introduced. Weak and strong duality are explained and optimality conditions, such as the complementary slackness and Karush-Kuhn-Tucker conditions are presented. Finally, three di↵erent examples illustrate the power of the Lagrangian duality. They are solved by using the optimality conditions previously introduced.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملConic optimization: an elegant framework for convex optimization
The purpose of this survey article is to introduce the reader to a very elegant formulation of convex optimization problems called conic optimization and outline its many advantages. After a brief introduction to convex optimization, the notion of convex cone is introduced, which leads to the conic formulation of convex optimization problems. This formulation features a very symmetric dual prob...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملStrong Duality in Robust Convex Programming: Complete Characterizations
Abstract. Duality theory has played a key role in convex programming in the absence of data uncertainty. In this paper, we present a duality theory for convex programming problems in the face of data uncertainty via robust optimization. We characterize strong duality between the robust counterpart of an uncertain convex program and the optimistic counterpart of its uncertain Lagrangian dual. We...
متن کاملA Brief Introduction to Duality Theory
These notes give an introduction to duality theory in the context of linear and positive semidefinite programming. These notes are based on material from Convex Analysis and Nonlinear Optimization by Borwein and Lewis and Numerical Optimization by Nocedal and Wright. Two examples are given to show how duality can be used. The first optimization application is to find the matrix in an affine fam...
متن کامل